Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey

نویسندگان

  • Dinesh Kumar
  • Gurpreet Singh Josan
چکیده

The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Parts of Speech Tagging for Indian Languages

Part of speech (POS) tagging is basically the process of automatically assigning its lexical category to each word according to its context and definition. Each word of sentence is marked in croups as corresponding to a particular part of speech like noun, verb, adjective and adverb. POS serves as a first step in natural language process applications like information extraction, parsing, and wo...

متن کامل

Parts Of Speech Tagging for Indian Languages: A Literature Survey

Part of speech (POS) tagging is the process of assigning the part of speech tag or other lexical class marker to each and every word in a sentence. In many Natural Language Processing applications such as word sense disambiguation, information retrieval, information processing, parsing, question answering, and machine translation, POS tagging is considered as the one of the basic necessary tool...

متن کامل

Induction of Fine-Grained Part-of-Speech Taggers via Classifier Combination and Crosslingual Projection

This paper presents an original approach to part-of-speech tagging of fine-grained features (such as case, aspect, and adjective person/number) in languages such as English where these properties are generally not morphologically marked. The goals of such rich lexical tagging in English are to provide additional features for word alignment models in bilingual corpora (for statistical machine tr...

متن کامل

Weakly Supervised Part-of-Speech Tagging for Morphologically-Rich, Resource-Scarce Languages

This paper examines unsupervised approaches to part-of-speech (POS) tagging for morphologically-rich, resource-scarce languages, with an emphasis on Goldwater and Griffiths’s (2007) fully-Bayesian approach originally developed for English POS tagging. We argue that existing unsupervised POS taggers unrealistically assume as input a perfect POS lexicon, and consequently, we propose a weakly supe...

متن کامل

Automatic Part-of-Speech Tagging for Bengali: An Approach for Morphologically Rich Languages in a Poor Resource Scenario

This paper describes our work on building Part-of-Speech (POS) tagger for Bengali. We have use Hidden Markov Model (HMM) and Maximum Entropy (ME) based stochastic taggers. Bengali is a morphologically rich language and our taggers make use of morphological and contextual information of the words. Since only a small labeled training set is available (45,000 words), simple stochastic approach doe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010